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1 Introduction

GPM/SA code is a MATLAB program that can be used with real or vectored output. It can be used
to perform multiple analyses including those listed below.

• Predict the output from a computer code based on an emulator constucted from a fully
Bayesian Gaussian spatial process (GaSP) model

• Compute main effect, joint effect, and total effect sensitivity indices for the output from a
computer code based on an emulator constucted from a fully Bayesian GaSP model

• Estimate the posterior distribution of the calibration parameters of a computer model based
on computer code output and field data output using a Bayesianimplementation of the
Kennedy and O’Hagan (2001) model as described in Higdon et al. (2008).

• Predict the output of a “true” input/output relationship based on computer code output and
field data output.

This document walks through a specific application, showinghow to set up, run, and visualize the
results using the GPM/SA code. Specifically, this tutorial shows

• How to set up a problem using the GPM/SA code,

• how to calibrate model parameters using physical observations,

• make predictions for the physical system at new input settings, and

• assess the accuracy of the Gaussian process emulator used inthe modeling.
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2 An Illustrative Problem

Suppose we drop balls of a given density from a tower at initial heights 5, 10, 15, and 20 meters.
We wish to predict the time it takes them to fall to the ground.We can develop a predictor by
conducting afield experimentin which we drop balls of different radiiR (and the desired density)
from different heights. Each dropped ball produces vector output in the form of a height-time
curve, i.e., a curve showing the time as function of the current heightt = t(h) of the ball at a set of
measured heightsh.

Suppose the following equation (in terms of the ball’s acceleration) describes the true height-time
curve1:

d2h

dt2
= g −

C

R

(

dh

dt

)2

. (1)

whereg is the acceleration due to gravity,C is the coefficient of drag, and, as introduced above,R
is the radius of the ball.

To make this toy problem realistic, suppose we know the acceleration due to gravityg but don’t
know the coefficient of dragC. In addition, our only insight into the physical process comes from
the field data we collect at our known initial tower heightsh0, and that we don’t know the true
physical process described by (1).

In addition to the field data, we have computer code (called asimulator) that takes as input a radius
R and a coefficient of dragC and produces a height-time curve giving the computed timest at
some set of tower heightsh (they don’t need to be the same heights used in the field experiments).
Our simulator does this in a deterministic way, so that the same inputs(R,C) will always produce
the same height-time curve. In this illustration, let’s suppose that the simulator produces output
according to this equation for acceleration:

d2h

dt2
= g −

C

R

dh

dt
. (2)

Note that while (1) has a squared velocity term (dh/dt), (2) includes velocity as a linear term only.
Thus our computer model is systematically “off” from reality, and indeed the units of (2) are no
longer acceleration units. Complicating matters, imaginethat our simulator is very expensive to
run, so we can’t exhaustively try all possible input pairs(R,C). This is a typical situation in fields
like climate modeling.

Since we can’t run the simulator at all possible locations in(R,C, h)-space, we use a simplistic
Latin hypercube (LH) design to choose locations at which to run the code. More serious
applications would be better served by enforcing some form of space filling in the LH design. We
would like to model the resulting simulator output so that wecan (inexpensively) predict what the

1Equations (1) and (2) are differential equations that can besolved for heighth as a function of timet and ball radius
R. We require the inverse of this: our field data have time as theoutput recorded as a function of height and radius. We
use an optimizer to perform this inversion in MATLAB.
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output would be at untried(R,C, h) inputs. In addition, we want to use our field data to adjust the
simulator output so that it matches reality as best as possible. That is, we want to adjust the
unknown parameters (C in this example) until our simulator output fits the field data, even with the
inadequate model in (2).

As described in the sections below, the Gaussian process model allows us to do both these things.
We first use a stationary Gaussian process to model the simulator’s output surface, at the same time
providing a measure of the uncertainty in our model at different locations. We call the Gaussian
process model in this context anemulator, as it is “emulating” the output of the simulator. We then
use another stationary Gaussian process to model thediscrepancybetween the simulator’s output
and the field data in order to calibrate the simulator.

Here’s a summary of the setup of our tower example, wheren denotes the size of our experimental
data set,m denotes the number of runs of the simulator, andnη denotes the number of heightshs
used by the simulator:

• We have data fromn = 3 field experiments, one each for balls of radiusR ∈ {0.1, 0.2, 0.4}
meters. Each experiment produces a curve of drop times made of three or four height-time
pairs. For the two smallest balls, the experimental heightsarehe ∈ {5, 10, 15, 20} meters.
We’ll imagine that the largest ball is too heavy to carry to the tallest tower, so its drop time is
only measured from experimental heightshe ∈ {5, 10, 15} meters.

• We used a scaled Latin hypercube design to select them = 25 (R,C) pairs, shown in Figure
1, at which to run our simulator. For each(R,C) pair in the design, the simulator produces a
curve ofnη = 16 height-time pairs, where the simulation heightshs are evenly spaced in
[1.5, 24] meters.

• Our simulator uses a model (2) that is inadequate to describethe true physical process (1).

3 How we use the Gaussian process model

The Gaussian process model considers two kinds of inputs:

1. x = (x1, x2, . . . , xp) denotes inputs that are under the control of (or are observable by) the
experimenter in both the field experiments and the simulatorruns. In our example we have
p = 1 input of this type:x = x = R, the radius of the ball being dropped.

2. θ = (θ1, θ2, . . . , θq) denotes inputs to the simulator that we need to estimate using the
experimental data. Theseθ could correspond to real physical quantities or could be
parameters of the simulator code. In our example we haveq = 1 input of this type:
θ = θ = C, the coefficient of drag.
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m R (p = 1) C (q = 1)
1 0.0996 0.2105
2 0.3995 0.1795
3 0.2956 0.1167
4 0.4033 0.1457
5 0.4478 0.0610
6 0.0971 0.2376
7 0.1222 0.0982
8 0.3155 0.1072
9 0.1676 0.0742

10 0.1480 0.0979
11 0.2331 0.1639
12 0.2251 0.2275
13 0.0795 0.1977
14 0.3272 0.2237
15 0.2460 0.1914
16 0.2881 0.2466
17 0.3502 0.0702
18 0.3613 0.1345
19 0.3833 0.1564
20 0.2095 0.1762
21 0.1308 0.1498
22 0.1898 0.1236
23 0.4264 0.2087
24 0.0579 0.0544
25 0.2676 0.0885

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.05

0.1
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Figure 1:Left: Scaled Latin hypercube design withm = 25 rows of(R,C) pairs.Right: A plot of
the design.

Note thath is not considered an input to the simulator since the simulator produces a 16-vector of
drop times for an evenly spaced set of heights betweenh = 1 andh = 24 meters.

The model also makes use of two kinds of outputs:

1. yobs(x), the output of the field experiments. For each experiment,yobs can be a scalar, or, as
in our tower example, it can be a curve. For the tower experiments,yobs= tobs, the vector of
times, one timet for each tower heighth.

Note that not all experiments need produce output of the samesize. For instance in our tower
experiment we have 4 recorded times for the two smaller ballsbut only 3 for the largest ball.

2. ysim(x,θ), the output of the simulation runs. As with the observed data, ysim can be a scalar
or a curve. For our tower example, we’ll assume that the simulator uses an evenly spaced
grid of nη = 16 heightshs and computes a time for each height on the grid, soysim = tsim.

Unlike the observed data, the simulator output will always have the same size, i.e., the same
number of computed times. The grid of heights will be the samefrom run to run.
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Here’s the idea: We use the simulator outputysim to construct a Gaussian process model that
emulatesthe simulator’s behavior at arbitrary(R,C) pairs. We use the field datayobs to calibrate
the coefficient of dragC so that the simulator output best matches the field data. And we use
another Gaussian process model to capture thediscrepancyδ between the simulator output and the
field data.

4 Some details of Gaussian processes

Gaussian processes (GP’s) are random functions that have proven useful for modeling output from
computer code, as well as other spatial phenomena. Figure 2 shows how a a Gaussian process
modelη(x) defined on a one-dimensional spaceX = [0, 1], can be used to estimate a smooth,
deterministic function.

Any Gaussian process is determined by its mean functionµ(x) (defined onX ) and its covariance
function Cov(x, x′) (defined onX ×X .). In the case of the GP used in Figure 2, the mean function
is 0, and the covariance function is given by

Cov(x, x′) = exp{−[(x− x′)/.3]2}.

Note that while the mean function can be rather general, the covariance function must be positive
definite.

Given the five function evaluations shown in Figure 2, the resulting Gaussian process fit is assured
to be smooth, and to interpolate the function evaluations given by the black dots. The fitted GP that
interpolates the data is now described by a posterior distribution with updated mean and covariance
functions which depend on the given function evaluations. Draws from thisposteriorGP are given
by the cyan lines. The mean function is given by the dashed redline. This basic modeling
approach can be extended to higher dimensional supportX by generalizing the mean and
covariance functions. In practice, parameters controlling the covariance function are also estimated
from the computer model output. See Higdon et al. (2008) for more details about the model.
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GP emulation of f(x) = exp(−1.4x)*cos(7*pi*x/2)

Figure 2: A Gaussian process emulator for the functionf(x) = exp{−1.4x} cos(3.5πx) over
x ∈ [0, 1] using the five observations of the function given by the blackdots. The black line gives
the true functionf(x), the dashed red line gives the posterior mean GP estimate, and the cyan lines
give plausible realizations of the GP emulator given the fiveobserved function evaluations. The GP
emulator exploits the smoothness inf(x) and the fact that the five evaluations are noiseless.
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5 Preparing the data for use by the GPM/SA code

We use the GPM/SA code to calculate the model and to make predictions from the model. Before
we can use the code, we need to read in our data; transform the inputs and outputs; compute basis
functions for transforming the standardized outputs and the discrepancy term; and package the data
into MATLAB structures that we can pass to the GPM/SA code.

We’ll walk through this for our tower example. Remember that

• x = R, the radii of the balls;

• θ = C, the coefficient of drag; and

• y = t, the vector of times (for both the field experiments and the simulator runs).

The heightsh serve as indices to the time vectors.

All the code in this section can be found in the MATLAB filereaddata.m .

5.1 Reading the data

For our example we have three data files for the field experiments and three for the simulator runs:
One with the inputs (Robs for the field experiments,Rsim andCsim for the simulator runs), one with
the outputs (tobs andtsim), and one with the heights (hobs andhsim). The set of simulator inputs
(the particular values ofRsim andCsim) is called thedesignto make the analogy with experimental
design.

% read in the field (observed) data
>> Robs = textread(’field.radii’); % radii R
>> hobs = textread(’field.height’); % heights h
>> tobs = textread([dirstr ’field.dat’])’; % times t
>> tstd = textread([dirstr ’field.sd’])’; % sd of measured t imes

Robs =

0.1000 0.2000 0.4000

% hobs has all the tower heights;
% we only use the lowest 3 for the largest ball
hobs =

5 10 15 20

% tobs has one column per experiment, one row per tower height .
% The NaN in experiment 3 indicates we didn’t drop the largest
% ball from the highest tower.
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tobs =

1.2180 1.1129 1.0611
2.0126 1.7225 1.5740
2.7942 2.2898 2.0186
3.5747 2.8462 NaN

tstd =

0.1000 0.1000 0.1000
0.1000 0.1000 0.1000
0.1000 0.1000 0.1000
0.1000 0.1000 NaN

% read in the design and the simulator output
>> [Rsim Csim] = textread(’sim.design’); % design (R and C)
>> tsim = textread(’sim.dat’); % times t
>> hsim = textread(’sim.height’); % heights h

>> n = size(tobs, 2); % number of experiments
>> m = size(tsim, 2); % number of simulation runs

5.2 Transforming x and θ

The GPM/SA code requires that the inputsx andθ lie in the interval[0, 1]p+q . Here we accomplish
this by shifting and scaling the original values ofx andθ, but in other settings another approach
could be appropriate.

We first transform the inputs to the simulator (Rsim andCsim) so they lie in[0, 1], then we use the
minimum and range ofRsim to transform the input to the field experiments (Robs) onto the same
scale.

% transform the simulator inputs so each dimension lies in [0 , 1]
>> Rsmin = min(Rsim);
>> Rsrange = range(Rsim);
>> Rsim01 = (Rsim - Rsmin) / Rsrange; % transformed R

>> Csmin = min(Csim);
>> Csrange = range(Csim);
>> Csim01 = (Csim - Csmin) / Csrange; % transformed C

% transform the field experiment input the same way
>> Robs01 = (Robs - Rsmin) / Rsrange; % transformed R
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5.3 Transforming ysim and yobs

The GPM/SA code requires that the outputsy have mean zero and variance one. As above, we first
transform the output from the simulator (tsim) and then use those values to transform the output
from the field experiment (tobs). Here we want the simulator output to have mean zero at each
heighth and an overall variance of one.

% standardize the simulator output
>> tsimmean = repmat(mean(tsim, 2), [1 m]); % the mean simula tor run
>> tsimStd = tsim - tsimmean; % make mean at each height zero
>> tsimsd = std(tsimStd(:)); % standard deviation of ALL ele ments of tsimStd
>> tsimStd = tsimStd / tsimsd; % make overall variance one

Now we transform the field data. We want to use the value of the mean simulator run (tsimmean

above) at each experimental height to do this, but the heightgrid of the simulator doesn’t match the
experimental heights; i.e., we don’t know the value of the mean simulator run at all the
experimental heights. Instead we’ll interpolatetsimmean in order to find its (interpolated) value at
each experimental height. We’ll use this interpolated meanand the overall standard deviation of all
elements of the simulator runs,tsimsd , to transform the field data.

Since each experiment could have a different size (different number of heights at which the ball
was dropped), we’ll loop over then experiments and record the results in a structure array called
yobs .

>> for ii = 1:n
% number of heights with measurements for experiment ii
numhts = sum(˜isnan(tobs(:, ii)));

% do the interpolation and get the interpolated values at the experimental heights
yobs(ii).tobsmean = ...

interp1(hsim, tsimmean(:,1), hobs(1:numhts), ’linear’, ’extrap’);

% do the standardization
yobs(ii).tobsStd = (tobs(1:numhts, ii) - yobs(ii).tobsme an’) / tsimsd;

% for convenience, record some extra information in yobs
yobs(ii).hobs = hobs(1:numhts); % the heights where measur ements were taken
yobs(ii).tobs = tobs(1:numhts, ii); % the untransformed ou tput

% now record the observation covariance matrix for the measu red times
yobs(ii).Sigy = diag(tstd(1:numhts,ii).ˆ2);
% now the observation covariance for the standardized obser vations
yobs(ii).SigyStd = yobs(ii).Sigy./(tsimsd.ˆ2);

end

Note thatyobs(ii).Sigy holds the covariance matrix for the observations of experiment ii ; one
can change the prior specification for the measurement precision to ensure that it stays close to this
specified prior value.
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5.4 Computing theK basis for transforming ysim and yobs

We want to capture the variation in the height-time curves across simulation runs; that is, we want
an efficient representation of how the simulator output varies at different locations in
(x, θ) = (R,C)-space. We will do this by computing the singular value decomposition of the
simulator output to get a set of basis functions (called theK basis). While we typically use SVD,
any linear transformation will work. For a compact representation, we usepu < m basis functions
that capture most of the variation in the simulation runs. (Note thatpu, the number of basis
elements, shouldn’t be confused withp, the dimension of the inputx.)

>> pu = 2; % number of basis components to keep
>> [U, S, V] = svd(tsimStd, 0); % compute the SVD
>> Ksim = U(:, 1:pu) * S(1:pu, 1:pu) ./ sqrt(m); % get the pu basis components

ThisKsim matrix of basis elements hasnη = 16 rows (one for each height in the grid used by the
simulator) andpu = 2 columns. We now compute a corresponding basis matrixKobs for each
experiment in the field data. These will have three or four rows (one for each experimental height
used) and againpu columns.

To get these matrices we interpolate between height grids (like we did to transformyobs above) and
again store the results in the structure arrayyobs .

>> for ii = 1:n
yobs(ii).Kobs = zeros(length(yobs(ii).tobsStd), pu); % a llocate space

% compute each basis component
for jj = 1:pu

% do the interpolation and get the interpolated values at the experimental heights
yobs(ii).Kobs(:, jj) = ...

interp1(hsim, Ksim(:, jj), yobs(ii).hobs, ’linear’, ’ext rap’);
end

end

5.5 Specifying theD basis for modeling the discrepancy term

The discrepancy termδ(x) models a systematic bias between the simulator (at the best setting for
the calibration parameterθ). We expect that the estimate forδ(x) will be similar for nearby values
of x. To this end,δ(x) is modeled as a GP with a correlation structure across thex space.

In the ball dropping example, for a given ball radiusx, δ(x) is a function over the possible drop
heights0 ≤ h ≤ 24. Overh ∈ [0, 24], δ(x) is represented as a linear combination of basis
functions

δ(x) =

pv
∑

i=1

di(x)vi
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wheredi(·) is a normal density centered atωi, with a standard deviation of 2, and thevi’s are
modeled as iidN(0, λv). This model is depicted in Figure 3. Generally, the user specifies the basis
representation for the discrepancy term in the GPM/SA codesetup file, which is named
readdata.m for this example. Here is how this discrepancy basis is specified.

Specifying the discrepancy basis requires that the user determine the form and location of the basis
elementsdi(·). For this example, we take thedi(·)’s to be normal kernels with an sd of 2. The
kernels are centered at a grid of 13 heights equally spaced between 0 and 24. For each experiment,
we need to construct the matrixDdat whose rows correspond to the number of observations in the
experiment, and whose columns correspond to thepv = 13 basis elements. For plotting purposes,
we also construct the matrixDsim which has rows corresponding to a dense grid over theh-space:

% -- D basis --
% JG: lay it out, and record decomposition on sim and data grid s
% JG: Kernel centers and widths
>> Dgrid = 0:2:max(hsim); % locations on which the kernels ar e centered
>> Dwidth = 2; % width of each kernel

pv = length(Dgrid); % number of kernels

% Compute the kernel function map, for each kernel
% Designate space for the Dsim matrix,
% one row per simulated height, one column per kernel
% (consider making the grid of heights much denser for plotti ng)
>> Dsim = zeros(length(hsim), pv);

% designate space for the Dobs matrix for each experiment,
% one row per experimental height, one column per kernel
>> for ii = 1:n

yobs(ii).Dobs = zeros(length(yobs(ii).tobsStd), pv);
end

% create each kernel
>> for jj = 1:pv

% first create kernel jj for each experiment
for ii = 1:n

% normpdf computes the value of a Gaussian with mean
% Dgrid(jj) and variance Dwidth at each element of hobs
yobs(ii).Dobs(:, jj) = normpdf(yobs(ii).hobs, Dgrid(jj) , Dwidth);

end
% now create kernel jj for the simulations
Dsim(:, jj) = normpdf(hsim, Dgrid(jj), Dwidth);

end

% normalize the basis elements of D so that the marginal varia nce of delta is about 1
>> Dmax = max(max(Dsim * Dsim’));
>> Dsim = Dsim / sqrt(Dmax);
>> for ii = 1:n

yobs(ii).Dobs = yobs(ii).Dobs / sqrt(Dmax);
end
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Figure 3: Basis construction ofδ(x) for the ball dropping example. Here a model forδ(x) – the
discrepancy between the calibrated simulator and experimental observations atx – is modeled by
a linear combinations of normal kernels. Top: 13 normal kernels with sd=2 are placed at heights
h = 0, 2, . . . , 24. Each of the 13 columns in D corresponds to one of these basis kernels. Middle:
each basis kernel is multiplied by a random normal variatevi which is estimated in the GPM/SA
code using the simulation output and experimental data. Bottom: the discrepancy is set to the sum
of these weighted kernels. In vector form, this is given byDv(x), wherev(x) is the 13 vector of
weights corresponding to input conditionx.
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For modeling purposes, only theDobs matrix in required for eachyobs(ii) . TheDsim matrix
is useful for plotting the estimated discrepancy over a denser set of heights. TheDmatricies are
normalized so that the prior marginal variance forδ(x) is approximately one whenλv = 1.

For normal basis kernels, the spacing needs to be no more thatone standard deviation between
adjacent kernels to ensure that no sparsity effects appear.The width of the kernels controls the
spatial dependence inδ(x) – wider kernels will giveδ fewer “wiggles” over the supporth. The
properties desired for the discrepancy term will necessarily depend on the application being
considered. The choice of an sd of 2m is ok for this ball dropping application. See other
applications for different examples of discrepancy basis construction. For more details regarding
the use of kernels to create GP models see Higdon (2002).
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5.6 Package all the pieces

Next we make a structure that contains all the information we’ve computed here. This structure,
here calleddata , will contain a field for the simulated data (simData ) and another for the field data
(obsData ). For both fields, we’ll include information that’s required by the model as well as extra
information (stored in a subfield calledorig ) that will later make it easier for us to return the
output to the original scale and to do plots.

Since the simulated data have the same size for each run (unlike the observed data), packaging this
information is straightforward.

% required fields
>> simData.x = [Rsim01 Csim01]; % our design (standardized)
>> simData.yStd = tsimStd; % output, standardized
>> simData.Ksim = Ksim;

% extra fields: original data and transform stuff
>> simData.orig.y = tsim;
>> simData.orig.ymean = tsimmean;
>> simData.orig.ysd = tsimsd;
>> simData.orig.Dsim = Dsim;
>> simData.orig.t = hsim;
>> simData.orig.xorig = [Rsim Csim]; % original scale for si mulated R, C

For the observed data we need to package each experiment separately since each could have a
different length.

% loop over experiments
>> for ii = 1:n

% required fields
obsData(ii).x = Robs01(ii);
obsData(ii).yStd = yobs(ii).tobsStd;
obsData(ii).Kobs = yobs(ii).Kobs;
obsData(ii).Dobs = yobs(ii).Dobs;
obsData(ii).Sigy = yobs(ii).Sigy./(tsimsd.ˆ2);

% extra fields: original data
obsData(ii).orig.y = yobs(ii).tobs;
obsData(ii).orig.ymean = yobs(ii).tobsmean;
obsData(ii).orig.t = yobs(ii).hobs;

end

Now we’ll put simData andobsData in a structure calleddata that we can pass to the GPM/SA
code.

>> data.simData = simData;
>> data.obsData = obsData;
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6 Model initialization and MCMC

Now that we have code to package the data appropriately, we can initialize the model, use the data
to compute the posterior distribution of the parameters, and then sample from this distribution via
Markov chain Monte Carlo (MCMC). MCMC is a general recipe forproducing a partial realization
of a Markov chain whose stationary distribution is the posterior distribution. This Markov chain
realization is then treated as a (dependent) sample from theposterior distribution from which one
can estimate posterior moments or probabilities. For details regarding MCMC, see (Robert and
Casella, 1999).

The code in this section is in the MATLAB filerunmcmc.m .

1. First we’ll call readdata.m from Section 5 in order to get thedata structure created there;
we’ll store it in a variable calledtowerdat .

>> towerdat = readdata()

towerdat =

simData: [1x1 struct]
obsData: [1x3 struct]

2. Now we can do the initial setup of the model using the GPM/SAcode function
setupModel() . The functionsetupModel() takes theobsData andsimData fields from
towerdat , makes all the structures we need to do MCMC, and returns a structure which
we’ll call pout for “parameteroutput”.

>> pout = setupModel(towerdat.obsData, towerdat.simData )
SetupModel: Determined data sizes as follows:
SetupModel: n= 3 (number of observed data)
SetupModel: m= 25 (number of simulated data)
SetupModel: p= 1 (number of parameters known for observatio ns)
SetupModel: q= 1 (number of additional simulation inputs (t o calibrate))
SetupModel: pu= 2 (response dimension (transformed))
SetupModel: pv= 13 (discrepancy dimension (transformed))

pout =

data: [1x1 struct]
model: [1x1 struct]

priors: [1x1 struct
mcmc: [1x1 struct]

obsData: [1x3 struct]
simData: [1x1 struct]

pvals: []

We’ll describe the gory details of the fields ofpout in Section 9. Meanwhile it’s enough to
know that they include the simulated and observed data transformed by theK matrix (data );
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initial values for the parameters of the Gaussian process model (model ); priors on the model
parameters which we’ll be estimating via MCMC (priors ); details (like step sizes) of the
MCMC routine for getting draws from the posterior distribution of the parameters (mcmc);
and theobsData andsimData structures that we gave it in the call tosetupModel() . It also
includes a placeholder for thepvals field which will hold the MCMC draws.

3. We now have the mathematical form of the posterior distribution of the model parameters,
and we want to use MCMC to get draws from it via the GPM/SA code functiongpmmcmc() .
These draws will be added to thepvals field of thepout structure created above.

(a) First we’d like to update the default MCMC settings inpout.mcmc by using the
GPM/SA code functionstepsize() to do burn-in of the MCMC chains and adjust the
step size. Here are the default setting values before we manipulate the step size; these
values were chosen to provide reasonable performance for a variety of problems:

>> pout.mcmc

ans =

thetawidth: 0.2000
rhoUwidth: [0.1000 0.1000 0.1000 0.1000]
rhoVwidth: 0.1000

lamVzwidth: 10
lamUzwidth: [5 5]
lamWswidth: [100 100]

lamWOswidth: 100
lamOswidth: 499.9995

pvars: {1x11 cell}
svars: {’theta’ ’betaV’ ’betaU’ ’lamVz’ ’lamUz’ ’lamWs’

’lamWOs’ ’lamOs’}
svarSize: [1 1 4 1 2 2 1 1]

wvars: {1x8 cell}

The draws used for burn-in will be added to the pvals field as seen below. Using 13
levels will give the step size estimation process a good chance to find a near optimal
step size.

>> nburn = 100; % number of draws to discard as "burn in"

>> nlev = 13; % number of candidate levels used for step size es timation

>> pout=stepsize(pout,nburn,nlev)
Setting up structures for stepsize statistics collect ...
Collecting stepsize acceptance stats ...
Drawing 100 samples (nBurn) over 13 levels (nLev)
Started timed counter, vals 1 -> 1300

963..20.29sec
Computing optimal step sizes ...
Step size assignment complete.

pout =
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data: [1x1 struct]
model: [1x1 struct]

priors: [1x1 struct]
mcmc: [1x1 struct]

obsData: [1x3 struct]
simData: [1x1 struct]

pvals: [1x1300 struct]

% look at the pvals field
>> pout.pvals

ans =

1x1300 struct array with fields:
theta
betaV
betaU
lamVz
lamUz
lamWs
lamWOs
lamOs
logLik
logPrior
logPost
thetaAcc
betaVAcc
betaUAcc
lamVzAcc
lamUzAcc
lamWsAcc
lamWOsAcc
lamOsAcc

Thepvals object holds the result of the MCMC. Here it records the 1300 draws from
the posterior distribution for each parameter produced by the MCMC updates carried
out so far. Subsequent calls togpmcmc() will augment the draws recorded inpout .
In addition to the parameter values at each of the 1300 MCMC steps, the
corresponding values for the log likelihood, the log prior,and the log posterior are also
recorded for each of the 1300 steps. Here are the updated MCMCsettings:

>> pout.mcmc

ans =
thetawidth: 0.2668

rhoUwidth: [0.5341 0.4523 2.6462 1.7655]
rhoVwidth: 0.4656

lamVzwidth: 433.1763
lamUzwidth: [0.8726 1.9799]
lamWswidth: [1.6396e+03 4.0254e+03]

lamWOswidth: 2.0908e+04
lamOswidth: 3.1539e+04
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pvars: {1x11 cell}
svars: {’theta’ ’betaV’ ’betaU’ ’lamVz’ ’lamUz’ ’lamWs’

’lamWOs’ ’lamOs’}
svarSize: [1 1 4 1 2 2 1 1]

wvars: {1x8 cell}

Again, we’ll explain the fields ofpout.mcmc in Section 9.

(b) Now we can get some new MCMC draws (realizations) that we’ll use for estimating
the model parameters. These will be added to thepvals field of pout .

>> nmcmc = 10000; % number of draws we want
>> pout = gpmmcmc(pout, nmcmc, ’step’, 1)
Started timed counter, vals 1 -> 10000

787..1577..2363..3158..3923..4675..5409..6152..6877 ..7614.. 1.7 min,
0.5 min remain
8344..9077..9817..2min:12.57sec

The ’step’, 1 flag tellsgpmmcmcto use the proposal widths currently in thepout
object.

pout =

data: [1x1 struct]
model: [1x1 struct]

priors: [1x1 struct]
mcmc: [1x1 struct]

obsData: [1x3 struct]
simData: [1x1 struct]

pvals: [1x11300 struct]

Note that there are now 10,000 additional values recorded for each parameter in the
pout object. These were produced by the 10,000 MCMC iterations carried out by the
last call togpmmcmc() .

4. At this point we have everything we need to make predictions, including the principal
components, the discrepancy basis, and the dimensions of the model. We can do asave

pout to record everything we’ve computed so far.

7 Some diagnostic plots

In this section we will use(x, θ) and(R,C) interchangeably; the GPM/SA code is written in terms
of (x, θ), while the code for our tower example is written in terms of(R,C). Recall thatx = R
andθ = C in this example.

We’d like to look at the MCMC draws and the resulting parameter estimates. Since working with
all 10,000 draws inpout.pvals can be cumbersome, in some cases we’ll take a smaller, evenly
spaced sample of the draws and examine those instead.
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from = 2000; % start getting realizations at this index
to = length(pout.pvals); % continue to the last realization
thismany = 500; % grab this many evenly spaced realizations
ip = round(linspace(from, to, thismany)); % indices of the p vals to use

With the exception of theshowPvals() function below, the plotting functions in this section are
not part of the GPM/SA code package. The.m files used are available separately on the web page.

7.1 Traces of the MCMC draws

The GPM/SA code functionshowPvals() will produce traces of the MCMC draws for the
parameters in the model as shown in Figure 4.

showPvals(pout.pvals);
Processing pval struct from index 1 to 11300

theta: mean s.d.
1: 0.372 0.03914

betaV: mean s.d.
1: 0.5771 0.8957

betaU: mean s.d.
1: 8.428 2.372
2: 0.6872 0.3639
3: 4.281 2.547
4: 3.329 2.626

lamVz: mean s.d.
1: 101.4 79.35

lamUz: mean s.d.
1: 0.4686 0.1506
2: 0.8496 0.3154

lamWs: mean s.d.
1: 457 296.1
2: 968.7 574.3

lamWOs: mean s.d.
1: 2.851e+04 2010

lamOs: mean s.d.
1: 1.564e+04 3599

logLik: mean s.d.
1: 37.55 29.62

logPrior: mean s.d.
1: 1663 4.191

logPost: mean s.d.
1: 1700 28.75

Note that we’re callingshowPvals() with all the draws inpout.pvals , not just the ones specified
by the indexip defined above. This includes the draws used for burn in and step size estimation.
The resulting plot is shown in Figure 4. The figure shows that the draws of all the parameters have
a stationary distribution after 2000 draws, indicating convergence of the chains. Note that a
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rerunning of this MCMC chain will give slightly different answers due to variation in the random
numbers generated.
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Figure 4: Traces of the MCMC draws of the parameters inpout.pvals as generated by the
showPvals() function.

7.2 Posterior distribution of θ = C

Figure 5 shows the histogram of the MCMC draws from the posterior distribution ofθ. These
values come from the top row of Figure 4, excluding the burn-in draws. This plot was made with
the code inthetaposthist.m using just thethismany realizations specified by the indexip above:

thetaposthist(pout, ip);

7.3 Principal components

Figure 6 shows thepu = 2 principal components used in this example. Note that the vertical scale
for the second principal component is much smaller than thatof the first; this confirms that most of
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Figure 5: Histogram of draws from the posterior distribution ofC, on the[0, 1] scale.

the variation in the data is being captured by the first principal component. We make this plot as
follows:

npc = size(pout.simData.Ksim, 2); % number of principal com ponents
for ii = 1:npc

subplot(npc, 1, ii);
plot(pout.simData.Ksim(:, ii))
title([’PC ’, num2str(ii)])

end

Figure 7 shows the posterior mean of the Gaussian process of the weight functions for the two
principal component at any given (x, θ) pair. The weightw(x, θ) at each (x, θ) pair is used to make
the predictions from the model. The codePCresponsesurf.m calls the functiongPred() to make
predictions at each grid point and then generate the plot:

PCresponsesurf(pout, ip);

7.4 Correlation parameters in the Gaussian process fit

Using the MCMC draws of the spatial dependence parametersβ, we can compute
ρ = exp{−β/4}. The value ofρ gives us information about the dependence of the simulation
output on each input parameterx andθ. Figure 8 shows boxplots of the posterior draws for theρs
for eachx andθ, and for each principal component. As above, the figure was generated using a
subset of the realizations:
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Figure 6: Thepu = 2 principal components used in modeling this example. Each isa 16-vector
using thenη = 16 heights in the simulator grid. Note the different scales on the twoy-axes; PC 2
captures much smaller variations in the data than does PC 1.

rhoboxplots(pout, ip);

Whenρ = 1 for a particularx or θ and principal component, it means that particular component of
the simulator output is constant along that dimension. Thenthe simulation is not sensitive to that
input; i.e., knowing the value of the input gives no information about the value of the output. Asρ
goes smaller than 1, this indicates activity associated with that input. The outputs will vary
smoothly with the inputs, with smallerρs indicating less smoothness.

As ρ approaches 0 for a particular dimension, the modeled response is increasingly flexible; the
model eventually fits the data as noise, i.e., it doesn’t find any smooth trend. This suggests
predictions from the model are suspect. Thus if any of the boxplots in Figure 8 show values that
are all close to zero, more diagnostics (e.g., cross-validation) should be considered before
accepting predictions from the model.
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Figure 7: Posterior mean of the Gaussian processes of the weight functions for the two principal
components. The weightsw(x, θ) are used to make the predictions.

7.5 Discrepancy estimation

The GPM/SA code calibrates the input parameters to match thefield data as well as possible. It
then uses another Gaussian process to estimate the discrepancy between the resulting simulation
(using the calibrated parameter values) and the field data. Figure 9 shows how this can work. The
left column shows the calibrated simulations; the center column shows the discrepancy between
the field data (circles) and the calibrated simulations; andthe right column shows the calibrated
predictions made after adding the discrepancy term to the calibrated simulation.

The codeetasdeltas.m computes predictions for each experiment, computes the discrepancies,
and plots them along with the calibrated predictions:

etasdeltas(pout, ip);
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component.

7.6 Predictions

Predictions. For each runi of the simulator, we construct a model using the other runs (excluding
run i), then predict runi based on the resulting model. This allows us to look for trends in the
quality of our predictions as a function of the inputsRsim andCsim. Figure 10 shows the results
sorted byRsim, while Figure 11 shows them sorted byCsim.

We can also look at the residuals for the predictions on each of these held out runs as shown in
Figure 12. Each curve gives the residual for one run at each height. The plot shows how the
predictions are better at lower heights, which makes sense since our simulator model’s error in
using a linear velocity term rather than a squared term will be exacerbated at higher heights.

Predictions at particular input values. Figures 10 and 11 are a little overwhelming with so many
plots to consider. A coarser way to explore trends of this sort is to do a similar plot using some
selected “high,” “middle,” and “low” values ofRsim andCsim. This is shown in Figure 13.

Figure 14 gives sensitivity plots to show changes in the simulation output values as the values ofx
(left) andθ are adjusted.
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Figure 9: Circles show the field data, and colored lines indicate the 5th and 95th percentiles.
Each row is a different ball size.Left column:Calibrated simulations.Center: Discrepancy term
(dashed line shows where zero discrepancy would be).Right: Calibrated predictions = calibrated
simulations + the discrepancy term.

8 What if I don’t have any experimental data?

The GPM/SA code can be used for a sensitivity analysis even inthe absence of experimental data.
If only simulations are available, set all the components oftheobsData structure to be[] . In this
case, there will be no parametersθ to calibrate to field data. Hence the model will construct an
emulator for the simulation code.

25



0 10 20
0
5

T
im

e 
(s

)
R = 0.05792
C = 0.05436

0 10 20
0
5

R = 0.07948
C = 0.19768

0 10 20
0
5

R = 0.09712
C = 0.23764

0 10 20
0
5

R = 0.09956
C = 0.21048

0 10 20
0
5

R = 0.1222
C = 0.09822

0 10 20
0
5

T
im

e 
(s

)

R = 0.13084
C = 0.1498

0 10 20
0
5

R = 0.14804
C = 0.09794

0 10 20
0
5

R = 0.16756
C = 0.07416

0 10 20
0
5

R = 0.1898
C = 0.1236

0 10 20
0
5

R = 0.20948
C = 0.17624

0 10 20
0
5

T
im

e 
(s

)

R = 0.22508
C = 0.22748

0 10 20
0
5

R = 0.23308
C = 0.16392

0 10 20
0
5

R = 0.24604
C = 0.1914

0 10 20
0
5

R = 0.2676
C = 0.0885

0 10 20
0
5

R = 0.28812
C = 0.24656

0 10 20
0
5

T
im

e 
(s

)

R = 0.2956
C = 0.11674

0 10 20
0
5

R = 0.31552
C = 0.10722

0 10 20
0
5

R = 0.32724
C = 0.22366

0 10 20
0
5

R = 0.35024
C = 0.07018

0 10 20
0
5

R = 0.36132
C = 0.1345

0 10 20
0
5

Height (m)

T
im

e 
(s

)

R = 0.38332
C = 0.15636

0 10 20
0
5

Height (m)

R = 0.39952
C = 0.17946

0 10 20
0
5

Height (m)

R = 0.40332
C = 0.14566

0 10 20
0
5

Height (m)

R = 0.42644
C = 0.2087

0 10 20
0
5

Height (m)

R = 0.44784
C = 0.06096

Figure 10: Hold-out predictions, sorted by the value ofRsim.

9 The pout object

The ball dropping example has producedpout which holds a variety of objects. The
preprocessing functionreaddata() constructs theobsData andsimData objects. The
obsData object holds information regarding the physical observation data, while thesimData
object holds information regarding the simulation output,including the basis representations for
the multivariate simulation output and the discrepancy basis.

The functionsetupModel() attaches four additional objects topout : data , model ,
priors , andmcmc. It also creates an empty objectpvals , which will later hold the MCMC
output produced bygpmcmc() . Hence the posterior samples for the various parameters will be
kept in thepvals object. Thedata object holds transformations of the simulation and observed
data that are required for likelihood evaluations used in the MCMC algorithm. There should be no
need to modify this data. Themodel object holds the all of the additional objects required to
evaluate the likelihood and prior. Thepriors object holds the prior specification for each of the
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Figure 11: Hold-out predictions, sorted by the value ofCsim.

model parameters. This includes upper and lower bounds for each parameter. Finally, themcmc
object holds information required to carry out the MCMC sampling. In particular, step sizes used
in the Metropolis and Hastings updates for each parameter. This object is modified when the
stepsize estimation is carried out ingpmcmc() is called.

Detailed descriptions of each of these fields is provided in the reference manual.
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